

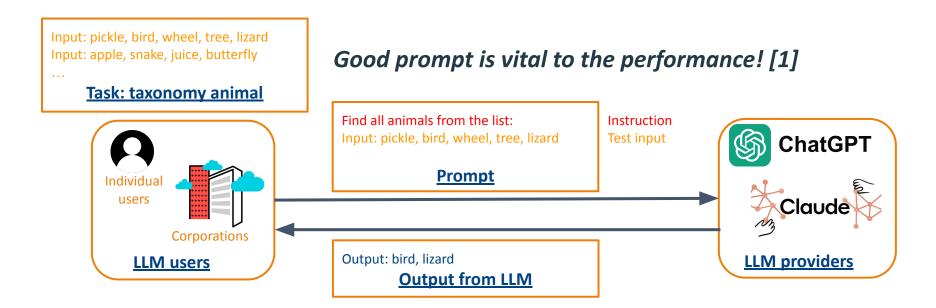
Prompt Optimization in the Wild Challenges and Opportunities

Xiaoqiang Lin https://xqlin98.github.io/ Nov 28, 2024

Invited Talk at Max Planck Research School for Intelligent Systems (IMPRS-IS) and University of Stuttgart

What are the challenges

What's next



[1] Mishra, S., Khashabi, D., Baral, C., Choi, Y., & Hajishirzi, H. (2021). Reframing Instructional Prompts to GPTk's Language. In Proc. ACL Findings.

- Human designed prompt can be costly and suboptimal
- Prompt optimization: Automatically optimize the prompts (including the instruction and exemplars) to obtain the best performance of LLMs

Find all animals from the list:	Instruction
Input: sweater, octopus, giraffe,	
orange	
Output: octopus, giraffe	Exemplars
Input: apple, lion, ladder	
Output: lion	
Input: pickle, bird, wheel, tree, lizard	Test input
<u>Prompt</u>	

What are the challenges

What's next

What are the challenges

• Best performing LLMs are black-box models

- ChatGPT (e.g., GPT3.5, GPT 4), Claude: only API access is available
- Gradient-based approaches are not applicable
- Access to black-box LLMs is costly
 - $_{\circ}$ API calls are expensive
 - A query-efficient approach is needed: query as less as possible to find the best prompt

Sometimes, no scoring method to quantify the quality of prompt

- A validation dataset is unavailable
- Scoring method can be unreliable

To tackle the challenges

Use Your INSTINCT: INSTruction optimization for LLMs using Neural bandits Coupled with Transformers (ICML 2024)

- Black-box query efficient instruction optimization

Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars (NeurIPS 2024)

- Black-box query efficient exemplar selection

Prompt Optimization with Human Feedback (ICML 2024 Workshop Oral)

- Optimize the prompt when scoring method is unavailable

To tackle the challenges

Use Your INSTINCT: INSTruction optimization for LLMs using Neural bandits Coupled with Transformers (ICML 2024)

- Black-box query efficient instruction optimization

Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars (NeurIPS 2024)

- Black-box query efficient exemplar selection

Prompt Optimization with Human Feedback (ICML 2024 Workshop Oral)

- Optimize the prompt when scoring method is unavailable

USE YOUR INSTINCT: INSTRUCTION OPTIMIZATION USING NEURAL BANDITS COUPLED WITH TRANSFORMERS

Xiaoqiang Lin^{*}, Zhaoxuan Wu^{*}, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jaillet, Bryan Kian Hsiang Low

In ICML 2024

⁰³ Formulation: Instruction Optimization

- Black-box LLM f
- Instruction ρ
- Input-output pairs: (x, y)
- A validation dataset: $D_V = \{(x_i, y_i)\}_{i=1}^n$

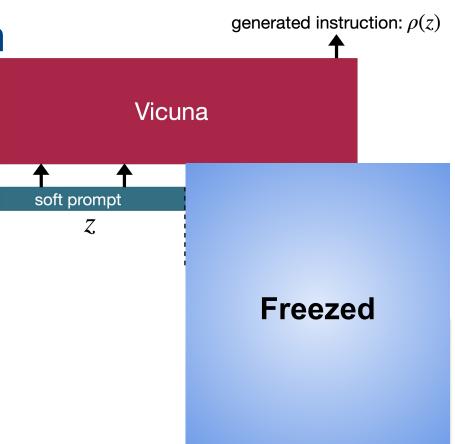
- Evaluation function: $s(\cdot, \cdot)$
- Objective:

$$\rho^* = \operatorname{argmax}_{\rho} h(\rho)$$
$$h(\rho) := \mathbb{E}_{(x,y) \in D_V} s(f(\rho, x), y)$$

Preliminary - Bayesian Optimization (BO)

- Sequential black-box optimization: find $\rho^* = \operatorname{argmax}_{\rho} h(\rho)$
- To choose sequential queries ρ_1, \ldots, ρ_t intelligently:
 - Uses a Gaussian process (GP) as a surrogate to model the objective function
 - Chooses queries by maximizing an acquisition function to balance exploration vs exploitation

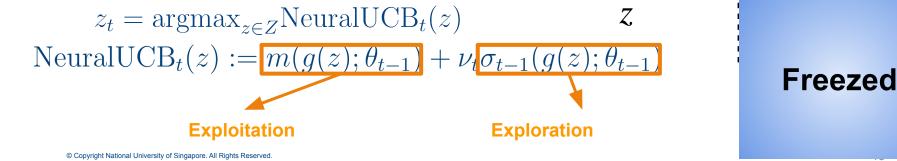
- Map a soft prompt z (a vector in continuous space) into instruction $\rho(z)$
 - $_{\rm O}$ Search in the continuous space



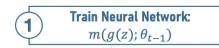
- Uses the whole Vicuna as surrogate model to leverage the expressive power of transformer: $m(g(z); \theta)$
- Acquisition function from NeuralUCB algorithm:

predicted score: $m(g(z); \theta)$ MLP hidden representation: g(z)

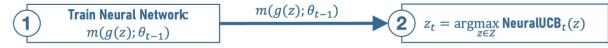
Freezed



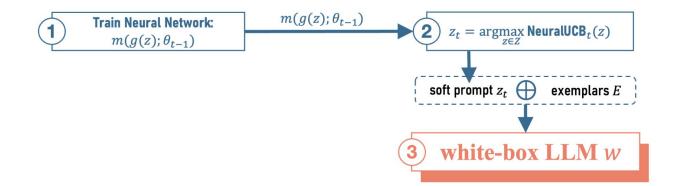
Step ①: Training the neural network for score prediction



Step 2: Selecting the next soft prompt using the NeuralUCB algorithm

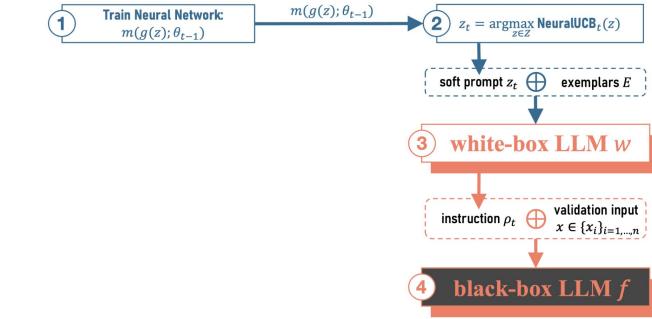


Step ③: Generating the instruction using a white-box LLM

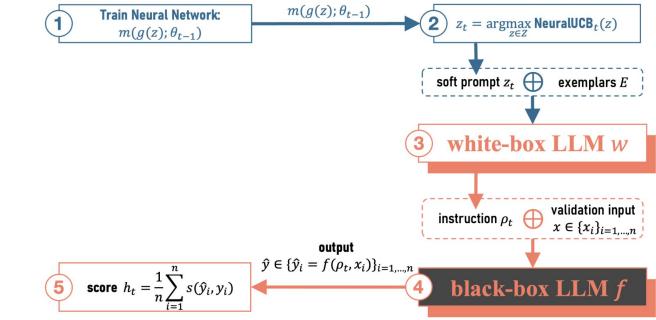


Copyright Na

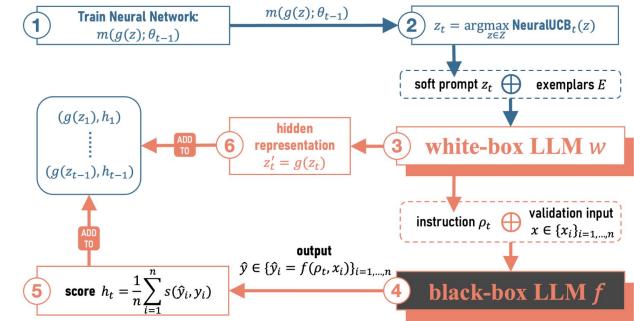
Step ④: Predicting the label for a validation dataset using black-box LLM and the generated instruction



Step (5): Evaluating the predicted results (i.e., the performance of the instruction)

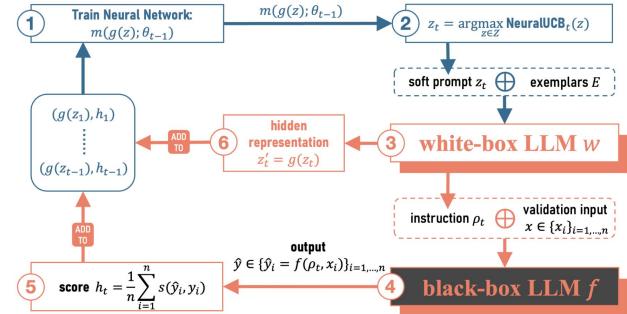


Step (6): Extracting the hidden representation from the white-box LLM for the instruction



© Copyright Na

Adding the hidden representation and the evaluated score to the dataset which is used to train the neural network. Repeat.



Instruction Induction

Task	APE	InstructZero	INSTINCT (ours)
antonyms	0.6367(0.1416)	0.8267(0.0072)	0.8467(0.0027)
auto_categorization	0.2500(0.0094)	0.2567(0.0119)	0.2500(0.0330)
auto_debugging	0.2917(0.0340)	0.3750(0.0000)	0.2917(0.0340)
cause_and_effect	0.5733(0.0891)	0.8133(0.0109)	0.5867(0.0871)
common_concept	0.0691(0.0207)	0.0864(0.0398)	0.2129(0.0019)
diff	0.6733(0.2667)	0.6933(0.2224)	1.0000(0.0000)
informal_to_formal	0.5736(0.0026)	0.5310(0.0024)	0.5534(0.0000)
letters_list	1.0000(0.0000)	0.5900(0.1674)	1.0000(0.0000)
negation	0.7533(0.0109)	0.7767(0.0136)	0.8167(0.0027)
object_counting	0.3633(0.0191)	0.3600(0.0929)	0.3400(0.0698)
odd_one_out	0.6333(0.0144)	0.6133(0.0871)	0.7000(0.0163)
orthography_starts_with	0.4567(0.1477)	0.5067(0.0871)	0.6667(0.0272)
rhymes	0.1567(0.0640)	1.0000(0.0000)	1.0000(0.0000)
second_word_letter	0.7467(0.2028)	0.4333(0.1872)	0.1000(0.0411)
sentence_similarity	0.0000(0.0000)	0.0000(0.0000)	0.1400(0.0047)
sum	0.6733(0.2667)	1.0000(0.0000)	1.0000(0.0000)
synonyms	0.3600(0.0759)	0.2767(0.0925)	0.3067(0.0491)
taxonomy_animal	0.3467(0.2341)	0.7167(0.0838)	0.8567(0.0599)
word_sorting	0.3300(0.0374)	0.3100(0.1143)	0.5133(0.0027)
word_unscrambling	0.4400(0.1389)	0.5500(0.0170)	0.6333(0.0072)
# best-performing tasks	5	5	13
# second-best-performing tasks	5	10	5
average rank	2.25	2.0	1.45

Instruction Induction (Summarization Task)

• INSTINCT also performs the best in another commonly used SAMSum benchmark dataset

Method	ROUGE-1	ROUGE-2	ROUGE-L
APE	0.32549	0.10308	0.30245
InstructZero	0.32595	0.10528	0.30061
INSTINCT	0.35580	0.13350	0.33600

Improving Zero-shot CoT

• An well-known zero-shot instruction for chain-of-thought (CoT) reasoning form [1] is [________"Let's think step by step."

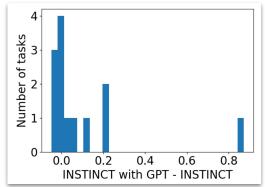
INSTINCT finds better ones:

Method	Dataset	Best Zero-Shot CoT Instruction	Score	
Kojima et al. (2022)	GSM8K	Let's think step by step. 0.71		
InstructZero	GSM8K	Let's use the instruction to solve the problem.	0.74299	
INSTINCT (ours)	GSM8K	Let's think about it.	0.74526	
Kojima et al. (2022)	AQUA-RAT	Let's think step by step.	0.52362	
InstructZero	AQUA-RAT	Let's break down the problem.	0.54331	
INSTINCT (ours)	AQUA-RAT	I have a new solution.	0.54724	
Kojima et al. (2022)	SVAMP	Let's think step by step.	0.7625	
InstructZero	SVAMP	Let's use the equation.	0.795	
INSTINCT (ours)	SVAMP	Let's use our brains.	0.81	

[1] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. In Proc. NeurIPS, 2022.

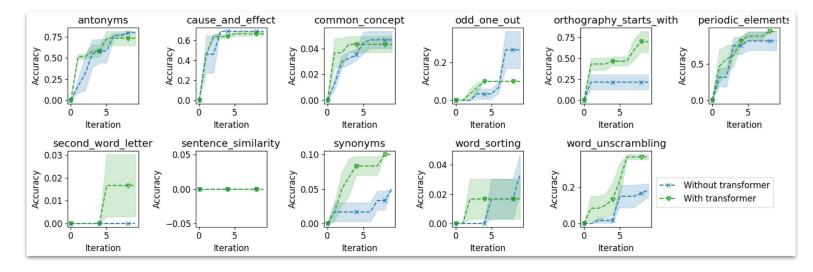
"We could further improve INSTINCT by asking GPT to rephrase for us"

- [1] proposed an *<u>"instruction resampling"</u>* technique for instruction induction
- Following the same spirit, we firstly pass the instruction to ChatGPT and instruct it to rephrase for us
- Experiments on difficult tasks



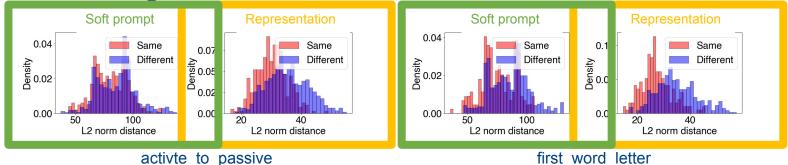
[1] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. Large language models are human-level prompt engineers. In Proc. ICLR, 2023.

"The hidden representation from the pre-trained transformer is effective"



• The use of the hidden representation allows our NN surrogate to quickly learn to accurately predict the scores and hence achieve high accuracies

"The hidden representation gives a better similarity measure"



- Red group: Soft prompts that map to the <u>same</u> instruction
- Blue group: Soft prompts that map to <u>different</u> instructions
- We compute the pairwise L2 distance between both the original <u>soft</u> prompts and their hidden <u>representations</u>
- InstructZero relies on Matérn kernel which solely relies on L2 distance

Conclusion

• We introduced the INSTINCT to optimize task-specific instructions for black-box LLMs

Our INSTINCT

 replaces the GP surrogate in BO by an NN while preserving BO's ability to handle <u>exploration v.s. exploitation</u>

 leverages the <u>expressive power</u> of a pre-trained transformer by coupling the NN surrogate with the hidden representation learned by the transformer
 achieved exceptional performance across extensive empirical evaluations

Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars

Zhaoxuan Wu^{*}, Xiaoqiang Lin^{*}, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick Jaillet, Bryan Kian Hsiang Low

In NeurIPS 2024

Motivation

- In-context learning (ICL): LLM learns from the input-label demonstrations/exemplars in the prompt. The prompt consists of several exemplars and an instruction
 ICL performance is heavily dependent on the selection of
 - exemplars and instructions

Challenges

- Only black-box access to the best LLMs
- Query to black-box LLMs is expensive
- Combinatorial optimization problem with a large search space o Retrieval based methods avoid this problem by ignoring ordering
- Best exemplars change when the instruction changes

We propose a query-efficient ordering-aware exemplar selection method that is able to optimize instruction and exemplars jointly

⁰³ Formulation

LLM inference:
$$\hat{y} = f([\underbrace{e_1, e_2, \dots, e_k}_{\text{context}}, x]) = f([E, x])$$
.

 $E = (e_1, e_2, \ldots, e_k)$ is an ordered sequence of exemplars

Optimization objective:
$$\max_{E \in \Omega} F(E) \triangleq \mathbb{E}_{(x,y) \in D_V}[s(f(E,x),y)]$$

Let's say we want to select a sequence of 5 exemplars from an exemplar dataset of size 1000. Size of the search space is A_5^{1000}

Our EASE algorithm - Reducing search space through optimal transport

$$OT(\mu_s,\mu_v) = \min_{\pi\in\Pi(\mu_s,\mu_v)}\int_{\mathcal{Z}^2}c(z,z')d\pi(z,z')$$

- Intuition: a subset of exemplars that is closer to the validation dataset is more helpful for the task
- Why OT?

o OT is shown to be useful in data selection work in ML [1]o OT takes data diversity into consideration

Our EASE algorithm - NeuralUCB

- NeuralUCB is a query-efficient black-box optimization algo which selects a prompt to query at each iteration
- Uses m() an NN to model the mapping from prompt E to performance
- **NeuralUCB** algorithm select the next prompt to query:

$$E_{t} = \arg \max_{E \in \Omega} \text{NeuralUCB}_{t}(E),$$

NeuralUCB_t(E) $\triangleq m(h(E); \theta_{t}) + \nu_{t} \sigma_{t-1}(h(E); \theta_{t}),$
Exploitation: the predicted performance of the prompt Exploration: the uncertainty of the predicted performance

⁰³ Our EASE algorithm - Jointly optimize instruction and exemplars

- Our framework allows us to naturally include instruction p to define a new search space
- This new search space allows us to find a optimal combination of exemplars and instruction

$$E = (p, e_1, e_2, \dots, e_k)$$
$$Q'_t \leftarrow P \times Q'_t$$

O3 Experimental results

© Copyright National Un

"Our algorithm outperforms existing retrieval-based algorithms and evolutionary algorithm"

Table 1: Average accuracy \pm standard error achieved by the best exemplar sequence discovered by different algorithms over 3 independent trials. For better distinguishability, we do not include easy tasks here (i.e., with 100% accuracy across baselines) and show full results in Tab. 5 of App. C.1.

	DPP	MMD	ОТ	Cosine	BM25	Active	Inf	Evo	Best-of-N	EASE
antonyms	$70.0{\scriptstyle\pm0.0}$	80.0 ± 0.0	81.7 ± 1.4	85.0 ± 0.0	85.0 ± 0.0	80.0 ± 0.0	86.7 ± 1.4	88.3 ± 1.4	90.0±0.0	90.0±0.0
auto_categorization	3.3 ± 1.4	8.3 ± 1.4	$0.0_{\pm 0.0}$	25.0 ± 0.0	16.7 ± 1.4	$10.0{\scriptstyle\pm2.4}$	21.7 ± 1.4	$21.7_{\pm 1.4}$	20.0 ± 0.0	30.0±0.0
diff	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$
larger_animal	70.0 ± 0.0	91.7 ± 1.4	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$	66.7 ± 1.4	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle\pm0.0}$
negation	95.0±0.0	95.0 ± 0.0	95.0 ± 0.0	95.0 ± 0.0	95.0 ± 0.0	95.0 ± 0.0	95.0 ± 0.0	95.0±0.0	95.0±0.0	95.0±0.0
object_counting	55.0 ± 2.4	56.7 ± 1.4	48.3 ± 1.4	61.7 ± 1.4	66.7 ± 1.4	$51.7_{\pm 1.4}$	63.3 ± 3.6	70.0 ± 0.0	70.0 ± 0.0	73.3±1.4
orthography_starts_with	$20.0{\scriptstyle \pm 2.4}$	35.0 ± 0.0	61.7 ± 1.4	78.3 ± 1.4	70.0 ± 0.0	$43.3{\scriptstyle \pm 1.4}$	$70.0{\scriptstyle\pm2.4}$	75.0 ± 0.0	78.3±1.4	78.3±1.4
rhymes	60.0 ± 0.0	$51.7_{\pm 1.4}$	$0.0{\pm}0.0$	$100.0{\scriptstyle \pm 0.0}$	80.0 ± 0.0	65.0 ± 8.2	$70.0{\scriptstyle \pm 10.8}$	$100.0{\scriptstyle\pm0.0}$	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$
second_word_letter	10.0 ± 2.4	30.0 ± 0.0	28.3 ± 1.4	50.0±0.0	$50.0{\scriptstyle \pm 0.0}$	26.7 ± 8.3	40.0 ± 0.0	46.7 ± 1.4	50.0±0.0	50.0±0.0
sentence_similarity	$20.0{\scriptstyle \pm 0.0}$	21.7 ± 2.7	$40.0{\scriptstyle\pm2.4}$	46.7 ± 1.4	53.3 ± 1.4	5.0±4.1	18.3 ± 5.4	45.0 ± 0.0	$51.7_{\pm 1.4}$	56.7±1.4
sentiment	85.0 ± 0.0	$90.0{\scriptstyle \pm 0.0}$	85.0 ± 0.0	96.7 ± 1.4	$100.0{\scriptstyle \pm 0.0}$	$85.0_{\pm 4.1}$	$91.7{\scriptstyle \pm 1.4}$	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$
sum	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	$0.0_{\pm 0.0}$	0.0 ± 0.0	$100.0{\scriptstyle\pm0.0}$	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$
synonyms	$10.0{\scriptstyle \pm 0.0}$	25.0 ± 0.0	20.0 ± 0.0	35.0±0.0	30.0 ± 0.0	3.3 ± 1.4	26.7 ± 1.4	30.0 ± 0.0	30.0 ± 0.0	30.0 ± 0.0
taxonomy_animal	43.3 ± 3.6	$40.0{\scriptstyle\pm2.4}$	46.7 ± 1.4	85.0 ± 2.4	80.0 ± 0.0	45.0 ± 6.2	$70.0_{\pm 4.1}$	80.0 ± 0.0	$80.0{\scriptstyle\pm0.0}$	88.3±2.7
translation_en-de	$90.0{\scriptstyle \pm 0.0}$	80.0 ± 0.0	80.0 ± 0.0	90.0 ± 0.0	85.0 ± 0.0	56.7 ± 13.0	90.0±0.0	90.0±0.0	90.0±0.0	90.0±0.0
translation_en-es	90.0 ± 0.0	$100.0{\scriptstyle\pm0.0}$	96.7 ± 1.4	$100.0{\scriptstyle \pm 0.0}$	$100.0{\scriptstyle \pm 0.0}$	96.7 ± 1.4	98.3 ± 1.4	100.0 ± 0.0	100.0 ± 0.0	$100.0{\scriptstyle \pm 0.0}$
translation_en-fr	$76.7{\scriptstyle\pm1.4}$	76.7 ± 1.4	81.7 ± 1.4	85.0 ± 0.0	85.0 ± 0.0	$81.7{\scriptstyle\pm1.4}$	85.0 ± 0.0	86.7 ± 1.4	85.0 ± 0.0	88.3±1.4
word_sorting	26.7 ± 1.4	88.3 ± 1.4	88.3 ± 1.4	$90.0{\scriptstyle \pm 0.0}$	71.7 ± 1.4	80.0 ± 0.0	$88.3{\scriptstyle \pm 1.4}$	93.3±1.4	$91.7_{\pm 1.4}$	$91.7_{\pm 1.4}$
word_unscrambling	$68.3{\scriptstyle \pm 1.4}$	56.7 ± 1.4	$71.7{\scriptstyle \pm 1.4}$	75.0 ± 0.0	76.7 ± 1.4	$63.3{\scriptstyle \pm 3.6}$	66.7 ± 1.4	75.0 ± 0.0	75.0 ± 0.0	78.3±2.7
# best-performing tasks	2	2	2	8	5	1	5	9	11	17

35

O3 Experimental results

When does selection of exemplars important? "When the LLM has not seen the task in its training dataset"

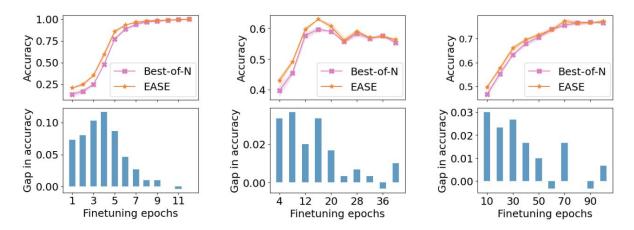


Figure 1: From left to right, the tasks are taxonomy animal, sentence similarity and object counting. The performance gaps between EASE and the Best-of-N baseline diminish as the LLM is finetuned. ³⁶

O3 Experimental results

"Selection of exemplars has larger impact on the performance in unseen tasks for LLM"

Table 2: Average accuracy \pm standard error over 3 independent trials achieved by different algorithms on the new families of out-of-distribution tasks.

Туре	Task	Noise	DPP	MMD	ОТ	Cosine	BM25	Active	Inf	Evo	Best-of-N	EASE
	LR	0%	31.7 ± 1.4	38.3 ± 2.7	50.0 ± 0.0	71.7 ± 1.4	70.0 ± 0.0	36.7 ± 1.4	56.7±5.9	61.7 ± 1.4	66.7 ± 1.4	81.7 ± 3.6
		10%	8.3 ± 1.4	$36.7{\scriptstyle\pm1.4}$	$48.3{\scriptstyle\pm1.4}$	61.7 ± 1.4	61.7 ± 1.4	0.0 ± 0.0	58.3±3.6	60.0 ± 0.0	65.0 ± 2.4	$73.3{\scriptstyle \pm 3.6}$
		30%	10.0 ± 0.0	$28.3{\scriptstyle \pm 1.4}$	46.7 ± 1.4	63.3 ± 1.4	60.0 ± 0.0	$40.0_{\pm 2.4}$	35.0 ± 2.4	53.3 ± 1.4	50.0 ± 0.0	$78.3{\scriptstyle \pm 1.4}$
sks		50%	0.0 ± 0.0	38.3 ± 1.4	45.0 ± 0.0	65.0 ± 0.0	53.3 ± 1.4	0.0 ± 0.0	$53.3{\scriptstyle \pm 1.4}$	46.7 ± 1.4	45.0 ± 0.0	71.7±2.7
tas		70%	$0.0_{\pm 0.0}$	55.0 ± 0.0	38.3 ± 2.7	65.0 ± 0.0	$50.0{\scriptstyle \pm 0.0}$	26.7 ± 5.4	30.0 ± 4.7	$33.3{\scriptstyle\pm1.4}$	33.3 ± 1.4	66.7 ± 3.6
sed		90%	$0.0{\scriptstyle\pm0.0}$	$21.7{\scriptstyle\pm1.4}$	$26.7{\scriptstyle\pm1.4}$	$46.7{\scriptstyle\pm1.4}$	$3.3_{\pm 1.4}$	0.0 ± 0.0	$6.7_{\pm 2.7}$	8.3 ± 1.4	15.0 ± 0.0	$53.3{\scriptstyle \pm 2.7}$
Rule-based tasks		0%	48.3±2.7	$40.0{\scriptstyle\pm2.4}$	$41.7{\scriptstyle\pm1.4}$	65.0 ± 0.0	58.3±1.4	30.0 ± 0.0	$61.7_{\pm 1.4}$	$75.0_{\pm 2.4}$	$71.7_{\pm 1.4}$	75.0±0.0
ule		10%	0.0 ± 0.0	$36.7{\scriptstyle\pm1.4}$	40.0 ± 0.0	63.3 ± 2.7	60.0 ± 0.0	36.7 ± 2.7	$65.0{\scriptstyle\pm2.4}$	$70.0{\scriptstyle\pm2.4}$	73.3 ± 1.4	$75.0{\scriptstyle \pm 2.4}$
R	LP-	30%	0.0 ± 0.0	48.3 ± 2.7	$40.0{\scriptstyle \pm 2.4}$	$60.0{\scriptstyle \pm 0.0}$	$55.0{\scriptstyle \pm 0.0}$	40.0 ± 7.1	53.3 ± 4.9	$65.0{\scriptstyle\pm2.4}$	65.0 ± 0.0	$73.3{\scriptstyle \pm 1.4}$
	variant	50%	$0.0_{\pm 0.0}$	65.0 ± 0.0	35.0 ± 2.4	63.3 ± 2.7	60.0 ± 0.0	38.3 ± 3.6	$48.3{\scriptstyle \pm 3.6}$	61.7 ± 1.4	65.0 ± 0.0	76.7±2.7
		70%	$0.0_{\pm 0.0}$	46.7 ± 2.7	35.0 ± 0.0	70.0 ± 0.0	60.0 ± 0.0	25.0 ± 8.2	$60.0_{\pm 4.1}$	56.7 ± 1.4	56.7 ± 1.4	$75.0{\scriptstyle \pm 0.0}$
		90%	$0.0{\scriptstyle \pm 0.0}$	$35.0{\scriptstyle\pm2.4}$	$50.0{\scriptstyle \pm 0.0}$	65.0 ± 2.4	$0.0{\scriptstyle \pm 0.0}$	$30.0{\scriptstyle \pm 12.5}$	$50.0{\scriptstyle \pm 2.4}$	$38.3{\scriptstyle \pm 1.4}$	$55.0_{\pm 2.4}$	63.3 ± 1.4
	AG News	0%	$20.0{\scriptstyle\pm2.4}$	15.0 ± 0.0	$26.7{\scriptstyle\pm1.4}$	$43.3{\scriptstyle\pm1.4}$	$43.3{\scriptstyle \pm 2.7}$	$5.0{\scriptstyle\pm2.4}$	$25.0{\scriptstyle\pm4.1}$	$40.0{\scriptstyle \pm 0.0}$	40.0 ± 0.0	53.3±3.6
		10%	$5.0_{\pm 0.0}$	15.0 ± 0.0	15.0 ± 0.0	41.7 ± 1.4	38.3 ± 1.4	3.3 ± 1.4	26.7 ± 2.7	36.7 ± 1.4	40.0 ± 0.0	56.7±2.7
sks		30%	10.0 ± 0.0	5.0 ± 0.0	5.0 ± 0.0	$40.0{\scriptstyle \pm 0.0}$	$36.7{\scriptstyle\pm1.4}$	$1.7_{\pm 1.4}$	10.0 ± 0.0	40.0 ± 0.0	43.3 ± 1.4	51.7 ± 1.4
ta		50%	$5.0_{\pm 0.0}$	10.0 ± 0.0	5.0 ± 0.0	$43.3{\scriptstyle\pm1.4}$	35.0 ± 0.0	3.3 ± 1.4	$20.0{\scriptstyle \pm 4.1}$	35.0 ± 0.0	35.0 ± 0.0	56.7±1.4
bel	Remap	70%	5.0 ± 0.0	25.0 ± 0.0	8.3 ± 1.4	$50.0{\scriptstyle \pm 0.0}$	$35.0{\scriptstyle \pm 0.0}$	$1.7_{\pm 1.4}$	$11.7{\scriptstyle\pm 5.4}$	$38.3{\scriptstyle \pm 1.4}$	46.7 ± 1.4	51.7 ± 1.4
l la		90%	5.0 ± 0.0	$18.3{\scriptstyle \pm 1.4}$	5.0 ± 0.0	$40.0{\scriptstyle \pm 0.0}$	$10.0{\scriptstyle \pm 0.0}$	15.0 ± 6.2	$35.0{\scriptstyle \pm 0.0}$	$35.0{\scriptstyle \pm 0.0}$	$41.7{\scriptstyle\pm1.4}$	$55.0{\scriptstyle \pm 2.4}$
Re-mapped label tasks	(0%	20.0 ± 0.0	$10.0{\scriptstyle \pm 0.0}$	13.3 ± 1.4	$40.0{\scriptstyle \pm 0.0}$	$40.0{\scriptstyle \pm 0.0}$	15.0 ± 2.4	33.3±5.4	$35.0{\scriptstyle\pm2.4}$	40.0 ± 0.0	50.0±0.0
lap		10%	16.7 ± 1.4	10.0 ± 0.0	15.0 ± 0.0	$48.3{\scriptstyle \pm 1.4}$	40.0 ± 0.0	13.3 ± 2.7	$23.3{\scriptstyle \pm 5.4}$	$33.3{\scriptstyle \pm 2.7}$	40.0 ± 0.0	$50.0{\scriptstyle \pm 0.0}$
H-	SST5 Reverse	30%	23.3 ± 1.4	6.7 ± 1.4	$25.0{\scriptstyle \pm 2.4}$	$40.0{\scriptstyle \pm 0.0}$	$40.0{\scriptstyle \pm 0.0}$	$21.7_{\pm 3.6}$	$26.7{\scriptstyle\pm1.4}$	$30.0{\scriptstyle \pm 0.0}$	$31.7{\scriptstyle\pm1.4}$	$41.7{\scriptstyle\pm3.6}$
R		50%	$21.7{\scriptstyle\pm1.4}$	15.0 ± 0.0	15.0 ± 0.0	43.3 ± 1.4	$33.3{\scriptstyle \pm 1.4}$	$21.7_{\pm 1.4}$	$23.3{\scriptstyle \pm 1.4}$	$28.3{\scriptstyle \pm 1.4}$	30.0 ± 0.0	$43.3{\scriptstyle\pm1.4}$
		70%	25.0 ± 0.0	$23.3{\scriptstyle \pm 1.4}$	$23.3{\scriptstyle \pm 1.4}$	40.0 ± 0.0	$30.0{\scriptstyle \pm 0.0}$	$20.0{\scriptstyle \pm 2.4}$	$25.0{\scriptstyle \pm 2.4}$	$36.7{\scriptstyle\pm1.4}$	36.7 ± 1.4	$45.0{\scriptstyle \pm 2.4}$
		90%	20.0 ± 0.0	15.0 ± 2.4	$20.0{\scriptstyle \pm 0.0}$	$30.0{\scriptstyle \pm 0.0}$	$30.0{\scriptstyle \pm 0.0}$	$13.3{\scriptstyle \pm 2.7}$	$21.7{\scriptstyle\pm1.4}$	$30.0{\scriptstyle \pm 0.0}$	30.0 ± 0.0	31.7 ± 1.4

© Copyright National University of Sin

O3 Experimental results

"Joint optimization of exemplars and instruction improves over only exemplars optimization significantly"

Table 3: Average accuracy \pm s.e. for EASE with and without jointly optimized instructions. We removed tasks with 100% accuracy. The full results are in App C, Tab. 6.

	EACE	EASE	Improve
	EASE	with instructions	-ment
antonyms	90.0±0.0	85.0 ± 0.0	-5.0 ↓
auto_categorization	30.0 ± 0.0	46.7 ±4.9	16.7 ↑
negation	95.0 ± 0.0	$100.0{\scriptstyle \pm 0.0}$	5.0 ↑
object_counting	73.3 ± 1.4	75.0±0.0	1.7 🕇
orthography_starts_with	78.3 ± 1.4	81.7±1.4	3.3 1
rhymes	$100.0{\scriptstyle \pm 0.0}$	91.7±3.6	-8.3 🗸
second_word_letter	50.0 ± 0.0	$100.0{\scriptstyle \pm 0.0}$	50.0 ↑
sentence_similarity	56.7±1.4	56.7±1.4	0.0 0
synonyms	30.0 ± 0.0	30.0±0.0	0.0 0
taxonomy_animal	88.3 ± 2.7	100.0±0.0	11.7 🕇
translation_en-de	90.0±0.0	90.0±0.0	0.0 0
translation_en-es	$100.0{\scriptstyle\pm0.0}$	100.0±0.0	0.0 0
translation_en-fr	88.3 ± 1.4	85.0 ± 0.0	-3.3 ↓
word_sorting	91.7 ± 1.4	$91.7_{\pm 1.4}$	0.0 0
word_unscrambling	78.3 ± 2.7	80.0±0.0	1.7 ↑
linear_4_10_noisy	73.3 ± 3.6	41.7±9.5	-31.7 🗸
LP-variant (10% noise)	$75.0_{\pm 2.4}$	85.0±2.4	10.0
AG News Remap (10% noise)	56.7 ± 2.7	65.0±0.0	8.3
SST5 Reverse (10% noise)	50.0±0.0	50.0±0.0	0.0 0

O3 Experimental results

"Our algorithm can leverage the existing retrieval-based methods to scale to larger exemplar domains"

Table 4: Average accuracy \pm s.e. achieved by EASE and EASE with retrieval for larger exemplar set sizes.

AG News Remap (10% noise)

Size n	EASE	EASE with retrieval
1000	$41.7{\scriptstyle\pm1.4}$	63.3±1.4
10000	55.0 ± 2.4	65.0±0.0
50000	56.7 ± 3.6	63.3±1.4
100000	$50.0{\scriptstyle \pm 2.4}$	65.0±0.0

SST5 Reverse (10% noise)

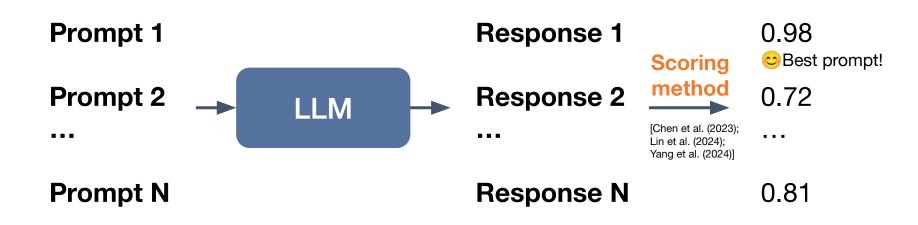
Size n	EASE	EASE with retrieval
1000	46.7 ± 1.4	55.0±3.5
3000	$42.5{\scriptstyle\pm1.8}$	51.7±1.4
5000	$43.3{\scriptstyle \pm 1.4}$	45.0±0.0
7000	$43.3{\scriptstyle \pm 1.4}$	50.0±0.0

Prompt Optimization with Human Feedback

Xiaoqiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, Bryan Kian Hsiang Low

> In ICML 2024, Workshop on Models of Human Feedback for Al Alignment, Oral Presentation

Prompt Optimization with Scoring Functions



Motivations

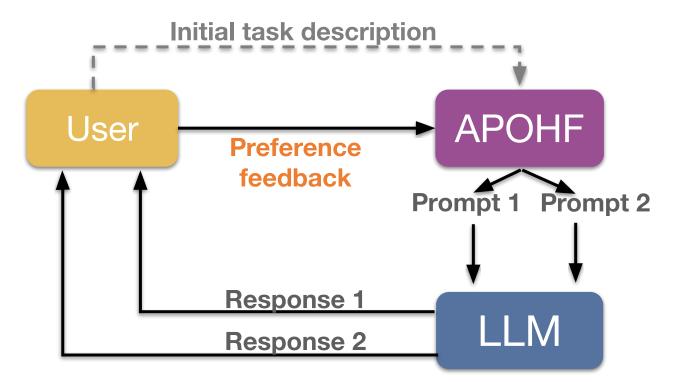
A scoring method may not be available or reliable

- No validation dataset available
- A scorer LLM may not be accurate
- Human is not good at giving a score (Yue et al. 2012)

Human is more reliable at providing preference feedback (Yue et al. 2012)

Can we perform prompt optimization using only human preference feedback?

Prompt Optimization with Human Feedback



Our algorithm - APOHF

➤ Using the neural network for latent score prediction

- $h(x; \theta)$ mapping from prompt to latent score
- Preference feedback model Bradley-Terry-Luce (BTL) model (Hunter et al. 2004)

$$P(\mathbf{x}_1 \succ \mathbf{x}_2) = \sigma(h(\mathbf{x}_1; \theta) - h(\mathbf{x}_2; \theta))$$

Solution Given the previous feedback $D_{t-1} = \{x_{s,1}, x_{s,2}, y_s\}_{s=1...t-1}$, train the NN (*h*) by minimizing the following loss function:

$$\ell(\theta) = -likelihood\left(y, \sigma(h(x_1; \theta) - h(x_2; \theta))\right) + \lambda ||\theta||$$

Our algorithm - APOHF

Selection of first prompt:

$$\mathbf{x}_{t,1} = \operatorname*{argmax}_{x} \boldsymbol{h}(\boldsymbol{x}; \boldsymbol{\theta}_{t})$$

Selection of second prompt:

$$\mathbf{x}_{t,2} = \underset{x}{\operatorname{argmax}} \mathbf{h}(x;\theta_t) + \mathbf{v} ||\nabla \mathbf{h}(x;\theta_t) - \nabla \mathbf{h}(\mathbf{x}_{t,1};\theta_t)||_{V_{t-1}^{-1}}$$

Exploitation: Exploration: Encourages $\mathbf{x}_{t,2}$ to be different from the previous

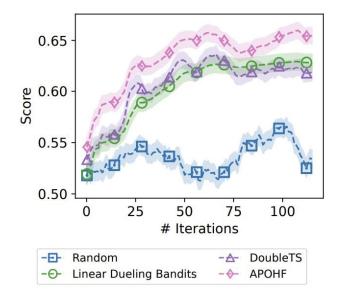
prediction

Ο be almerent from the previously selected prompts and x_{t.1}

(Arun et al. (2024))

Verma, Arun, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, and Bryan Kian Hsiang Low. "Neural Dueling Bandits." ICML 2024 Workshop RLControlTheory niversity of Singapore. All Rights Reserved. 45

Experiment - Optimization of User Instructions



Task	Iter	Instruction		
antonyme	0	add the prefix "un-" to the given words to form their opposites.	0.45	
antonyms	5	remove the "un-" prefix from each word.	0.45	
	10	provide the opposite of the given words.	0.70	

Our APOHF consistently and significantly outperforms the other methods.

Experiment - Prompt Optimization for Text-to-Image Generative Models

Our APOHF can efficiently produce images which better align with the image the user has in mind.

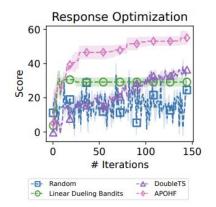
© Copyright National University of Singapore. All Rights Reserved.

Experiment - Response Optimization with Human Feedback

The prompt is "Human: What is there to do in Atlantic City?".

Iter	Response	Score
0	There are many activities to do in Atlantic City! You can visit the famous Atlantic City Boardwalk, try your luck at the casinos, enjoy the beach and water activities, shop at the outlets and specialty stores, dine at top-rated restaurants, enjoy live entertainment and nightlife, visit museums and historical sites, and attend events and festivals throughout the year.	81.96
10	There are plenty of things to do in Atlantic City! You can visit the famous boardwalk, try your luck at the casinos, enjoy a show or concert at one of the many entertainment venues, dine at a variety of restaurants, shop at the outlets and specialty stores, relax on the beach, or take a stroll through the historic district. There's something for everyone in Atlantic City!	91.46
20	There are many attractions and activities in Atlantic City, including: 1. Casinos: Atlantic City is known for its many casinos, where you can try your luck at slots, poker, blackjack, and more. 2. Boardwalk: 3. Beach: 4. Steel Pier: 5. Shows and concerts: 6. Nightlife: 7. Dining: 8. Shopping:	180.14

Our APOHF is able to further refine the response of an LLM to make it more preferable for human users.



What is prompt optimization

What are the challenges

What's next

What's next in prompt optimization

- 1. Current PO methods require optimization for a specific LLM.
- 2. PO method require expensive optimization for each task.
- 3. The generation of the prompt domain is vital to the PO performance.
- 4. Applications for PO: agentic AI, improve reasoning by PO, etc.

• Any questions?

THANK YOU

My Other Related Works

[1] Hu, W., Shu, Y., Yu, Z., Wu, Z., Lin, X., Dai, Z., ... & Low, B. K. H. (2024). Localized zeroth-order prompt optimization. NeurIPS 2024 Spotlight.

[2] Zhou, Z., Lin, X., Xu, X., Prakash, A., Rus, D., & Low, B. K. H. (2024). DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning. NeurIPS 2024.

[3] Xu, X., Wu, Z., Qiao, R., Verma, A., Shu, Y., Wang, J., ... & Low, B. K. H. (2024, November). Position Paper: Data-Centric AI in the Age of Large Language Models. EMNLP findings.

[4] Wang, J., Lin, X., Qiao, R., Foo, C. S., & Low, B. K. H. (2024). Helpful or Harmful Data? Fine-tuning-free Shapley Attribution for Explaining Language Model Predictions. ICML 2024.