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What is prompt optimization
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LLM providersLLM users

Individual
users

Corporations

Instruction
Test input

Find all animals from the list:
Input: pickle, bird, wheel, tree, lizard

Prompt

Output: bird, lizard

Output from LLM

Input: pickle, bird, wheel, tree, lizard
Input: apple, snake, juice, butterfly
…

Task: taxonomy animal

Good prompt is vital to the performance! [1]

[1] Mishra, S., Khashabi, D., Baral, C., Choi, Y., & Hajishirzi, H. (2021). Reframing Instructional Prompts to GPTk's Language. In Proc. ACL Findings.
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What is prompt optimization
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Find all animals from the list:
Input: sweater, octopus, giraffe, 
orange
Output: octopus, giraffe
Input: apple, lion, ladder
Output: lion
Input: pickle, bird, wheel, tree, lizard

Prompt

Instruction

Exemplars

Test input

• Human designed prompt can be 
costly and suboptimal

• Prompt optimization: Automatically 
optimize the prompts (including the 
instruction and exemplars) to obtain 
the best performance of LLMs
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What are the challenges
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• Best performing LLMs are black-box models
o ChatGPT (e.g., GPT3.5, GPT 4), Claude: only API access is available
o Gradient-based approaches are not applicable

• Access to black-box LLMs is costly
o API calls are expensive
o A query-efficient approach is needed: query as less as possible to find 

the best prompt
• Sometimes, no scoring method to quantify the quality of prompt

o A validation dataset is unavailable 
o Scoring method can be unreliable
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To tackle the challenges
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Use Your INSTINCT: INSTruction optimization for LLMs usIng Neural 
bandits Coupled with Transformers (ICML 2024)

- Black-box query efficient instruction optimization 

Prompt Optimization with EASE? Efficient Ordering-aware Automated 
Selection of Exemplars (NeurIPS 2024)

- Black-box query efficient exemplar selection 

Prompt Optimization with Human Feedback (ICML 2024 Workshop Oral)
- Optimize the prompt when scoring method is unavailable
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USE YOUR INSTINCT:
INSTRUCTION OPTIMIZATION USING NEURAL 
BANDITS COUPLED WITH TRANSFORMERS
Xiaoqiang Lin*, Zhaoxuan Wu*, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong 

Ng, Patrick Jaillet, Bryan Kian Hsiang Low
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In ICML 2024
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Formulation: Instruction Optimization03
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• Black-box LLM    
• Instruction      
• Input-output pairs:
• A validation dataset:
• LLM takes instruction    prepended to a test input   , then output
• Evaluation function: 
• Objective: 
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Preliminary - Bayesian Optimization (BO)
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• Sequential black-box optimization: find
• To choose sequential queries                 intelligently:

o Uses a Gaussian process (GP) as a surrogate to model the objective 
function

o Chooses queries by maximizing an acquisition function to balance 
exploration vs exploitation
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INSTINCT Algorithm
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Input: [INPUT] Output: [OUTPUT] 
Input: [INPUT] Output: [OUTPUT] 
Input: [INPUT] Output: [OUTPUT] 
Input: [INPUT] Output: [OUTPUT] 
Input: [INPUT] Output: [OUTPUT] 
The instruction was to

• Map a soft prompt    (a vector in 
continuous space) into 
instruction 
o Search in the continuous space

Freezed
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INSTINCT Algorithm
• Uses the whole Vicuna as surrogate 
model to leverage the expressive 
power of transformer: 

• Acquisition function from 
NeuralUCB algorithm:

13

Exploitation Exploration

Freezed

Freezed
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INSTINCT Algorithm04
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Step ①: Training the neural network for score prediction
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INSTINCT Algorithm04
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Step ②: Selecting the next soft prompt using the NeuralUCB 
algorithm
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INSTINCT Algorithm04
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Step ③: Generating the instruction using a white-box LLM
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INSTINCT Algorithm04
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Step ④: Predicting the label for a validation dataset using black-box 
LLM and the generated instruction
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INSTINCT Algorithm04
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Step ⑤: Evaluating the predicted results (i.e., the performance of 
the instruction)
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INSTINCT Algorithm04
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Step ⑥: Extracting the hidden representation from the white-box 
LLM for the instruction
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INSTINCT Algorithm04

20

Adding the hidden representation and the evaluated score to the 
dataset which is used to train the neural network. Repeat.
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Instruction Induction
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Instruction Induction (Summarization Task)
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• INSTINCT also performs the best in another commonly used 
SAMSum benchmark dataset
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Improving Zero-shot CoT
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• An well-known zero-shot instruction for chain-of-thought (CoT) 
reasoning form [1] is “Let’s think step by step.”

[1] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language models are zero-shot reasoners. In Proc. NeurIPS, 2022.

• INSTINCT finds better ones:
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“We could further improve INSTINCT by 
asking GPT to rephrase for us”
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• [1] proposed an “instruction resampling” technique for 
instruction induction

• Following the same spirit, we firstly pass the instruction to 
ChatGPT and instruct it to rephrase for us

• Experiments on difficult tasks

[1] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. Large language models are human-level prompt engineers. In Proc. ICLR, 2023.



© Copyright National University of Singapore. All Rights Reserved. 

“The hidden representation from the 
pre-trained transformer is effective”
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• The use of the hidden representation allows our NN surrogate to quickly 
learn to accurately predict the scores and hence achieve high accuracies
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“The hidden representation gives a better 
similarity measure”
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•        Red group: Soft prompts that map to the same instruction
•        Blue group: Soft prompts that map to different instructions
• We compute the pairwise L2 distance between both the original soft 
prompts and their hidden representations

• InstructZero relies on Matérn kernel which solely relies on L2 
distance

activte_to_passive first_word_letter

Soft prompt Representation Soft prompt Representation
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Conclusion
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• We introduced the INSTINCT to optimize task-specific 
instructions for black-box LLMs

• Our INSTINCT
o replaces the GP surrogate in BO by an NN while preserving BO’s ability to 

handle exploration v.s. exploitation
o leverages the expressive power of a pre-trained transformer by coupling 

the NN surrogate with the hidden representation learned by the transformer
o achieved exceptional performance across extensive empirical evaluations
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Prompt Optimization with EASE? Efficient 
Ordering-aware Automated Selection of 
Exemplars
Zhaoxuan Wu*, Xiaoqiang Lin*, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong 

Ng, Patrick Jaillet, Bryan Kian Hsiang Low
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In NeurIPS 2024
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Motivation
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• In-context learning (ICL): LLM learns from the input-label 
demonstrations/exemplars in the prompt. The prompt consists 
of several exemplars and an instruction

• ICL performance is heavily dependent on the selection of 
exemplars and instructions
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Challenges

30

• Only black-box access to the best LLMs
• Query to black-box LLMs is expensive
• Combinatorial optimization problem with a large search space

o Retrieval based methods avoid this problem by ignoring ordering
• Best exemplars change when the instruction changes

We propose a query-efficient ordering-aware exemplar selection 
method that is able to optimize instruction and exemplars jointly
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Formulation03
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is an ordered sequence of exemplars

Let’s say we want to select a sequence of 5 exemplars from an 
exemplar dataset of size 1000. Size of the search space is 

LLM inference:

Optimization objective:
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Our EASE algorithm - Reducing search 
space through optimal transport03
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• Intuition: a subset of exemplars that is closer to the validation 
dataset is more helpful for the task

• Why OT?
o OT is shown to be useful in data selection work in ML [1]
o OT takes data diversity into consideration

[1] Just, H. A., Kang, F., Wang, J. T., Zeng, Y., Ko, M., Jin, M., & Jia, R. (2023). Lava: Data valuation without pre-specified learning algorithms. ICLR 2023



© Copyright National University of Singapore. All Rights Reserved. 

Our EASE algorithm - NeuralUCB03
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• NeuralUCB is a query-efficient black-box optimization algo 
which selects a prompt to query at each iteration

• Uses m() – an NN – to model the mapping from prompt E to 
performance

• NeuralUCB algorithm select the next prompt to query:

Exploitation: the predicted 
performance of the prompt

Exploration: the uncertainty of 
the predicted performance



© Copyright National University of Singapore. All Rights Reserved. 

Our EASE algorithm - Jointly optimize 
instruction and exemplars

03
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• Our framework allows us to naturally include instruction p to 
define a new search space

• This new search space allows us to find a optimal combination 
of exemplars and instruction
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Experimental results03

35

“Our algorithm outperforms existing retrieval-based 
algorithms and evolutionary algorithm”
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Experimental results03
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When does selection of exemplars important?
“When the LLM has not seen the task in its 
training dataset”
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Experimental results03
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“Selection of exemplars has larger impact on 
the performance in unseen tasks for LLM”
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Experimental results03
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“Joint optimization of exemplars and instruction 
improves over only exemplars optimization significantly”
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Experimental results03
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“Our algorithm can leverage the existing retrieval-based 
methods to scale to larger exemplar domains”
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Prompt Optimization with Human Feedback
Xiaoqiang Lin, Zhongxiang Dai, Arun Verma, See-Kiong Ng, Patrick Jaillet, Bryan Kian 

Hsiang Low
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In ICML 2024, Workshop on Models of Human 
Feedback for AI Alignment, Oral Presentation
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Prompt Optimization with Scoring 
Functions
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Prompt 1

Prompt 2
…

Prompt N

Response 1

Response 2
…

Response N

0.98

0.72
…

0.81

😊Best prompt!Scoring 
method

[Chen et al. (2023); 
Lin et al. (2024); 
Yang et al. (2024)]
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Motivations
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A scoring method may not be available or reliable
▪ No validation dataset available 
▪ A scorer LLM may not be accurate
▪ Human is not good at giving a score (Yue et al. 2012)

Human is more reliable at providing preference feedback (Yue et 
al. 2012)

Can we perform prompt optimization using only human 
preference feedback?
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Prompt Optimization with Human Feedback
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User APOHF

LLM

Initial task description

Prompt 1 Prompt 2

Preference 
feedback

Response 1

Response 2
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Our algorithm - APOHF
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•  
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Our algorithm - APOHF
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•  

Exploitation: 
Score 

prediction

 

(Arun et al. (2024))
Verma, Arun, Zhongxiang Dai, Xiaoqiang Lin, Patrick Jaillet, and Bryan Kian Hsiang Low. “Neural Dueling Bandits.” ICML 2024 Workshop 
RLControlTheory
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Experiment - Optimization of User 
Instructions
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Our APOHF consistently and significantly 
outperforms the other methods.
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Experiment - Prompt Optimization for 
Text-to-Image Generative Models
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Our APOHF can efficiently produce images which 
better align with the image the user has in mind.
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Experiment - Response Optimization with 
Human Feedback
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Our APOHF is able to further 
refine the response of an LLM 
to make it more preferable for 
human users.

The prompt is “Human: What is there to do in Atlantic City?”.
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1. Current PO methods require optimization for a specific LLM. 
2. PO method require expensive optimization for each task.
3. The generation of the prompt domain is vital to the PO 

performance.
4. Applications for PO: agentic AI, improve reasoning by PO, 

etc.

What’s next in prompt optimization

50
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Q & A

• Any questions?
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THANK YOU
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